2 research outputs found

    Analytical Solutions and Multiscale Creep Analysis of Functionally Graded Cylindrical Pressure Vessels

    Get PDF
    This study deals with the time-dependent creep analysis of functionally graded thick-cylinders under various thermal and mechanical boundary conditions. Firstly, exact thermoelastic stress, and iterative creep solutions for a heat generating and rotating cylindrical vessel made of functionally graded thermal and mechanical properties are proposed. Equations of equilibrium, compatibility, stress-strain, and strain-displacement relations are solved to obtain closed-form initial stress and strain solutions. It is found that material gradient indices have significant influences on thermoelastic stress profiles. For creep analysis, Norton’s model is incorporated into rate forms of the above-mentioned equations to obtain time-dependent stress and strain results using an iterative method. Validity of our solutions are at first verified using finite element analysis, and numerical results found in the recent literature have been enhanced. Investigation of effects of material gradients reveals that radial variation of density and creep coefficient have significant effects on strains histories, while Young’s modulus and thermal property distributions only influence stress redistribution at an early stage of creep deformation. Next, a more realistic model of introducing microscale creep effects into a macroscopic modeling is employed to investigate the creep behavior of functionally graded hollow cylinders. Finite element (FE) simulations are employed to evaluate the position-dependent parameters associated with creep constitutive law at the microscale. A macroscopic FE model solves the non-linear boundary value problem to determine the time-varying creep stresses and strains. The framework proposed is capable of predicting the creep response of functionally graded pressure vessels based on the constitutive behavior of the creeping matrix, and volume fraction profile. Effective creep properties have been computed using three different micromechanical models and the homogenized creep response and its effect on the macroscopic behavior are compared. Considering the computational expenses associated with the large 3D finite element models, the simple 2D axisymmetric model is able to closely capture the creep behavior in such multiscale methods. Finally, a multi-objective particle swarm optimization algorithm is implemented to minimize the initial stress and final creep strain of functionally graded cylinder subjected to mechanical and thermal loads

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population.The aim of this study was to inform vaccination prioritization by modelling the impact of vaccination on elective inpatient surgery. The study found that patients aged at least 70 years needing elective surgery should be prioritized alongside other high-risk groups during early vaccination programmes. Once vaccines are rolled out to younger populations, prioritizing surgical patients is advantageous
    corecore